油气历来是能源领域最为主要的资源之一, 目前,环球范围内已探明石油可采资源量为5 350.0x108 t、凝析油可采资源量为496.2x108 t、天然气可采资源量为588.4x1012 m³。天下上针对油气探索领域的紧张方法为地质勘探,地震勘探,以及钻井勘探。
人工智能和大数据技能正在逐步成为地质勘探领域中的核心办理方案被运用与各个场景中,从卫星遥感数据剖析,到航空照片优化,再到油气田特色建模。人工智能已成为数字化勘探的一部分,并大范围提高油气田勘探准确性。
作者 | 田辰
一、油气勘探下地质勘探的大环境
近几年来,国际油气价格持续颠簸,并在2017年达到近5年来油气市场交易总额最低点。环球范围内整年交易总额仅为3435亿美元。虽然,环球范围内常规油气资源储量仍旧丰富,但各大公司都在防患于未然,开始持续加注油气勘探领域,希望通过增加探明储量,以增加资产,从而应对环球油气价格的不愿定性。2019年,国际油气行业巨子如Total,BP都明确表示将立志尽快落地油气勘探中人工智能的运用以增强竞争。而地质勘探不仅是油气勘探领域中的第一步,也是人工智能干系技能落地的打破口。
环球范围内整年交易总额(来自安永)
二、地质勘探中的紧张人工智能技能领域
打算机视觉:是指机器代替人眼对目标进行识别、跟踪和丈量,并进一步进行图像处理的技能。在地质勘探领域,打算机视觉被广泛运用于针对卫星遥感和航空照片图像数据的剖析,识别,标注以及丈量。
图像增强:是指利用不同算法针对空域内干系图像数据的灰度变换,比拟度,曝光度,高反差进行调度,以让图像变得清晰可见,并去除不必要的噪点。在地质勘探领域被广泛运用对图像数据的清晰度增强,大幅度提升地质数据的准确性,让其他油气储量、位置预测性算法更为精确。
机器学习:是指利用规律对未知数据进行预测的算法。目前,在地质勘探领域被广泛运用于图像增强,数据剖析,3D建模等多个领域以及维度。与此同时,多个机器学习算法也在试取利用监督学习,无监督学习与增强学习等手段进一步提升与优化干系准确性以及精度,以确保所得出地质勘探结果的可靠性。
大数据技能:大数据技能的体系弘大,根本技能包括数据采集,数据预处理,数据仓库等。正式如此,大数据正在成为各大行业的用来加速数字化进程的必不可缺手段,在地质勘探领域也不例外,以数字数据为根本的剖析正在逐渐取代人工剖析走上舞台。
物联网技能:是指通过传感器,RFID,携带末端设备,和举动步伐等通过内网,专网,或互联网实现对“万物”监管,掌握与运营一体化的技能。目前在地质勘探领域被广泛运用于数据采集以及终端剖析。
沉浸式技能:是指使人视觉,听觉或触觉沉浸在身临其境的虚拟环境中,被广泛利用于勘探领域对付地质构造层级的罗列以及展示。
三、人工智能技能在地质勘探中的运用分布
其他周边场景:由于本报告磋商人工智能技能的范围有限,以是只罗列了油气勘探中地质勘探的部分前沿运用案例,故并未包含一些热门且成熟的干系运用。
四、地质勘探部分落地案例简述
Earth AI:Earth AI正在与NASA互助利用弘大的卫星遥感以及航空照片数据,通过打算机视觉与机器学习算法剖析地质中可能存在的未探知的油气田以及矿物。该系统还可根据实地勘探结果成分的录入,进一步优化机器学习算法对地质剖析结果的准确性以及精确度。Minerva Intelligence:Minerva利用沉浸式,机器学习与人工智能技能,从多维度办理在数据补全的情形下进行地质剖析与勘探,以发掘未被探知的油气田以及矿产。该系统针对油气勘探的准确率经由验证可达到近88%的成功率。ExxonMobil:ExxonMobil与MIT互助利用NASA的数据利用打算机视觉,图像增强,以及大数据技能剖析海洋层面地理地质数据,并构建含油布局图,从而帮助企业大幅度减少探索本钱以及时间。Total:Total与Google互助利用海量地理地质数据构建了可以帮助地质学家以及地质信息工程师减少地质勘探韶光以及人工的机器学习算法,并利用此算法构建对应的地质图。该算法和地质图相称于帮助干系事情职员配备了私人助手以让他们更加专注于更高代价的地质勘探事情。Belmont Technology:BP投资的Belmont Technology初创公司利用人工智能与机器学习技能通过剖析多维度的地质地理数据可以进行逆向工程学以得到更为精确的地质勘探结果,让油气勘探的本钱直线低落,并可对开采,钻井的后续过程提出优化建议以确保各环节的高效率。五、人工智能技能在地质勘探的局限性
缺少闇练节制地质措辞的大数据剖析人才:油气勘探行业的技能门槛相对较高,而较之金融,康健医疗的行业相对冷门。这让传统油气勘探数据剖析人才缺口巨大。但油气勘探中人工智能的运用每每离不开这些具备地质知识的人才。地质数据格式难以标准化:油气勘探中的地质勘探每每涉及多个学科不同数据,如气候数据,地质数据,化学数据等这让从各公司,各政府职能部门抽取或获取数据的难度直线上升,而人工智能每每须要海量的数据以演习机器学习算法来增加精确度与准确度。能源企业对人工智能技能投入不敷:数字化进程以及人工智能技能的推进须要能源企业的持续投入,但每每能源企业在新技能投资方向的比例较少,而大部分采纳的是收购策略,这让人工智能技能投产的周期在勘探领域所花费的韶光较长。六、人工智能技能在地质勘探的发展趋势
资料采集方面应建立持续性与实时化的地质监控不雅观测网络:由于地质勘探对各种环境成分哀求较高,持续实时监控地质,景象,海文等数据成为了未来发展的一定性。持续监控网络上述数据可让后续的勘探事情剖析更加精确与准确。地质数据处理方面,数据质量持续提升:机器学习等模型将持续参与地质勘探领域,从多维度提升数据的准确性以及干净程度。优化算法将在后续地质勘探中成为核心技能,让数据质量得到质的提升以确保油气田勘探的准确性。机器设备智能化:勘探设备的智能化与联网化正在成为多维度数据的核心根本,目前深水,高寒等环境的机器人已经逐步遍及。无人化,联网化的勘探设备正在成为一定性。