语音识别技能(Automatic Speech Recognition)是一种将人的语音转换为文本的技能。随着深度学习的发展,端到端语音识别技能也取得了巨大的打破。将原始的音频数据,经由分帧、加窗、FFT等操作后,得到描述音频在时、频域信息的梅尔特色或是Fbank特色。将特色送入transformer等神经网络,输出对应的文本信息。此外,由大量文本演习的措辞模型(language model)能够纠正语音识别输出文本不通顺的问题,改进阅读体验。而热词技能也被用来办理语音识别的领域适配问题,犹如音不同字。
本文将先容如何利用录音文件识别极速版给无字幕视频自动天生字幕。
录音文件识别极速版采取同步接口,利用GPU加速模型的推理过程。对付两个小时内的音、视频文件,可以在1分钟内返回识别结果,知足准实时字幕、音频质检等对识别速率有哀求的场景。感兴趣的读者可以点击录音文件识别极速版文档(https://support.huaweicloud.com/api-sis/sis_03_0090.html),理解详情。
注:本文同步发布至华为云AI Gallery Notebook,可以在AI Gallery上运行:利用录音文件极速版为视频天生字幕(AI Gallery_Notebook详情_开拓者_华为云)
给无字幕视频天生字幕,便是从视频中的提取音频流,将音频流送入录音文件识别极速版,得到识别笔墨,和对应的韶光戳信息。然后将其转换为视频字幕文件格式,如srt文件。得到srt字幕文件后,在播放视频时,载入字幕文件,就可以看到字幕了。
因此,全体流程如下:
1、利用ffmpeg工具,从视频中提取音频流
2、设置适宜的参数,利用录音文件识别极速版,催音频文件进行识别
3、对识别结果,包括笔墨和韶光戳信息,进行处理,得到视频字幕文件
4、将命名相同的视频文件与 srt 文件放在同一目录下,用播放器打开,即可得到有字幕的视频。或者利用ffmpeg,以硬字幕的形式,将字幕嵌入到视频中。
注:SRT(SubRip 文件格式)因此 SubRip 文件格式保存的大略字幕文件,扩展名为 .srt。每个字幕在 SRT 文件中有四个部分:
指示字幕编号或位置的数字计数器。字幕的开始和结束韶光。一行或多行的字幕文本表示字幕结束的空行代码开拓步骤一:提取音频流采取ffmpeg从视频文件中提取音频流,并保存为音频文件output.wav
ffmpeg -i input.mp4 -ar 16000 -ac 1 output.wav
-ar指定保存音频文件的采样率,这里16000表示1秒钟,保存16000个采样点数据;-ac指定保存音频的通道数,这里1表示保存为单通道音频。
步骤二:安装语音识别python SDK在安装python3后,用pip安装其他依赖依赖包
pip install setuptoolspip install requestspip install websocket-client
下载最新版python sdk源码:https://sis-sdk-repository.obs.cn-north-1.myhuaweicloud.com/python/huaweicloud-python-sdk-sis-1.8.1.zip
进入下载的Python SDK目录,在setup.py所在层目录实行 python setup.py install 命令,完成SDK安装。
步骤三:调用录音文件极速版导入依赖包from huaweicloud_sis.client.flash_lasr_client import FlashLasrClientfrom huaweicloud_sis.bean.flash_lasr_request import FlashLasrRequestfrom huaweicloud_sis.exception.exceptions import ClientExceptionfrom huaweicloud_sis.exception.exceptions import ServerExceptionfrom huaweicloud_sis.bean.sis_config import SisConfigimport json
初始化客户端
config = SisConfig()config.set_connect_timeout(50)config.set_read_timeout(50)client = FlashLasrClient(ak=ak, sk=sk, region=region, project_id=project_id, sis_config=config)
布局要求
asr_request = FlashLasrRequest()asr_request.set_obs_bucket_name(obs_bucket_name) # 设置存放音频的桶名,必选asr_request.set_obs_object_key(obs_object_key) # 设置OBS桶中的工具的键值,必选asr_request.set_audio_format(audio_format) # 音频格式,必选asr_request.set_property(property) # property,比如:chinese_16k_conversationasr_request.set_add_punc('yes')asr_request.set_digit_norm('no')asr_request.set_need_word_info('yes')asr_request.set_first_channel_only('yes')
为视频产生字幕文件时,不仅须要笔墨,也须要笔墨对应的韶光戳信息。当一句话过长,屏幕无法完全显示时,就须要对这句话进行切分。因此,仅仅根据每个句子的起始和截止韶光,无法准确的确定切分后两句话的起始和截止韶光。因此我们须要字级别的韶光信息。而将need_word_info配置为’yes’,就可以输出字级别的韶光戳信息。如下:
34;word_info": [ { "start_time": 590, "word": "哎", "end_time": 630 }, { "start_time": 830, "word": "大", "end_time": 870 }, { "start_time": 950, "word": "家", "end_time": 990 }, { "start_time": 1110, "word": "好", "end_time": 1150 },]
接下里发送识别要求
result = client.get_flash_lasr_result(asr_request)
拿到带有详细韶光戳信息的识别结果result:
"result": { "score": 0.9358551502227783, "word_info": [ { "start_time": 590, "word": "哎", "end_time": 630 }, { "start_time": 830, "word": "大", "end_time": 870 }, { "start_time": 950, "word": "家", "end_time": 990 }, { "start_time": 1110, "word": "好", "end_time": 1150 }, { "start_time": 1750, "word": "我", "end_time": 1790 }, { "start_time": 1910, "word": "是", "end_time": 1950 }, { "start_time": 2070, "word": "你", "end_time": 2110 }, { "start_time": 2190, "word": "们", "end_time": 2230 }, { "start_time": 2350, "word": "的", "end_time": 2390 }, { "start_time": 2870, "word": "音", "end_time": 2910 }, { "start_time": 3030, "word": "乐", "end_time": 3070 }, { "start_time": 3190, "word": "老", "end_time": 3230 }, { "start_time": 3350, "word": "师", "end_time": 3390 }, { "start_time": 3590, "word": "康", "end_time": 3630 }, { "start_time": 3750, "word": "老", "end_time": 3790 }, { "start_time": 3950, "word": "师", "end_time": 3990 }, { "start_time": 4830, "word": "那", "end_time": 4870 }, { "start_time": 4990, "word": "么", "end_time": 5030 }, { "start_time": 5350, "word": "这", "end_time": 5390 }, { "start_time": 5550, "word": "几", "end_time": 5590 }, { "start_time": 5750, "word": "系", "end_time": 5790 }, { "start_time": 5870, "word": "列", "end_time": 5910 }, { "start_time": 6070, "word": "呢", "end_time": 6110 }, { "start_time": 6310, "word": "我", "end_time": 6350 }, { "start_time": 6390, "word": "们", "end_time": 6470 }, { "start_time": 6510, "word": "来", "end_time": 6550 }, { "start_time": 6670, "word": "到", "end_time": 6710 }, { "start_time": 6830, "word": "了", "end_time": 6870 }, { "start_time": 7430, "word": "发", "end_time": 7470 }, { "start_time": 7630, "word": "声", "end_time": 7670 }, { "start_time": 7830, "word": "练", "end_time": 7870 }, { "start_time": 8030, "word": "习", "end_time": 8070 }, { "start_time": 8950, "word": "三", "end_time": 8990 }, { "start_time": 9190, "word": "十", "end_time": 9230 }, { "start_time": 9350, "word": "五", "end_time": 9390 }, { "start_time": 9470, "word": "讲", "end_time": 9510 } ], "text": "哎,大家好,我是你们的音乐老师康老师。那么这几系列呢,我们来到了发声练习三十五讲。" }, "start_time": 510, "end_time": 9640}
步骤四:将识别结果转为srt字幕格式文件
由于视频播放界面的宽度有限,当一句话包含的笔墨数过多时,会存在一行放不下的问题。因此我们在天生srt文件时,须要将笔墨数量过长的一句话切分为两句话,分别在不同的韶光段显示。企切分后的第一句话的起始韶光不变,截止韶光为末了一个字的截止韶光;第二句话的起始韶光为第一个字的起始韶光,截止韶光不变。这样就担保切分后两句话的韶光戳也是精确的,进而在得当的视频帧中显示精确的文本内容。
def json2srt(json_result): results = "" count = 1 max_word_in_line = 15 min_word_in_line = 3 punc = ["。", "?", "!
", ","] segments = json_result['flash_result'][0]['sentences'] for i in range(len(segments)): current_result = segments[i] current_sentence = current_result["result"]["text"] if len(current_result["result"]["word_info"]) > max_word_in_line: srt_result = "" srt_result_len = 0 current_segment = "" cnt = 0 start = True for i in range(len(current_sentence)): if current_sentence[i] not in punc: if start: start_time = current_result["result"]["word_info"][cnt]['start_time'] start = False else: end_time = current_result["result"]["word_info"][cnt]['end_time'] current_segment += current_sentence[i] srt_result_len += 1 cnt += 1 else: if srt_result_len < min_word_in_line: srt_result += current_segment + current_sentence[i] current_segment = "" else: srt_result += current_segment + current_sentence[i] current_segment = "" start_time = time_format(start_time) end_time = time_format(end_time) if srt_result[-1] == ",": srt_result = srt_result[:-1] results += str(count) + "\n" + start_time + "-->" + end_time + "\n" + srt_result + "\n" + "\n" count += 1 start = True srt_result = "" else: start_time = time_format(current_result["start_time"]) end_time = time_format(current_result["end_time"]) if current_sentence[-1] == ",": current_sentence = current_sentence[:-1] results += str(count) + "\n" + start_time + "-->" + end_time + "\n" + current_sentence + "\n" + "\n" count += 1 return results
得到srt格式的字幕文件
步骤五:播放视频,载入字幕
修正文件名,担保srt文件和原始视频文件命名相同,然后用狂风影音播放视频:
步骤六:利用ffmpeg给视频添加硬字幕(可选)ffmpeg -i input.mp4 -vf subtitles=subtitle.srt output_srt.mp4
注: 硬字幕是将字幕渲染到视频的纹理上,然后将其编码成独立于视频格式的一个完全视频。硬字幕与视频是一个整体,不能变动或删除。
关注#华为云开拓者同盟# 点击下方,第一韶光理解华为云新鲜技能~
华为云博客_大数据博客_AI博客_云打算博客_开拓者中央-华为云