如今,AI 的运用已经遍布各个行业,利用的办法也越来越丰富,越来越多的人考试测验将 AI 参与进自己的事情流程中。
不过在此之前,我们做项目需求的时候也须要评估项目是否适宜利用 AI 赞助,毕竟 AI 的功能不是万能的,有些地方也存在着它暂时的“硬伤”。
这次我们将以一个活动运营海报需求为案例,分享如何利用 AI 工具 Stable Diffusion 对其进行赞助设计(本篇案例利用的是秋叶版本 Stable Diffusion)
一、制作前期构思与参考
这次需求是制作一张活动推送图,推送给玩家增加活动热度以及获取更多流量。
需求方希望画面中紧张表示 IP、信件干系的元素,能给人一种在书写信件的画面感。按照需求方所给到的信息,我们找了批参考图供给需求方确认画面大致觉得。
通过参考图与需求方的沟通后,我们大致确认画面是一张信纸在桌面上,信纸上写着本次活动的干系内容。
二、确定风格&AI 利用视觉风格上,通过谈论以及参考图的视觉效果,终极还是决定方向于三维质感,不过这次我们打算考试测验利用 AI 赞助制作整体的画面基调。
由于之前做过一版类似的推送图,以是本次就相称于做一次画面迭代,而用 AI 来进行画面的迭代也恰好是非常得当的。
话不多说,我们前辈入到 Stable diffusion。首先,我们进入到图生图界面,将垫图素材拖入图生图的图片区域。输入好关键词并调节好参数开始炼图。
关键词如下:The center of the image is a piece of paper on the table, The image is a close-up shot, showing the details of the paper, The image is taken from a bird's-eye view angle, Close-up view, indoors, the scene is bright, The overall picture is bright, The picture is a 3D modeling, C4D, Octane renderer, masterpiece, best quality, highres, original, reflection, unreal engine rendered, body shadow, extremely detailed CG unity 8k wallpaper, minimalist
(在这里我们利用了 toon2 和 COOLKIDS 这两个 lora 模型。模型不唯一,可根据自己需求在 C 站上自行选择下载。)
反向关键词:(worst quality:2), (low quality:2), (normal quality:2), lowres, ((monochrome)), ((greyscale))
反向关键词就利用一些通用的即可。
参数内容如下:
个中要把稳下,在一开始炼图时,重绘幅度须要大概掌握在 0.5-0.7 范围内,避免变革过大毁坏构图,也要避免变革过小达不到画面迭代的效果。
接着就可以开始炼图了,这个环节比拟 Midjourney 来说,可以避免花费过多韶光炼图,Stable Diffusion 的可掌握参数比较多,也因此可以更快的炼出靠近自己想要的图片。
以上是筛选出的几张图,接着再选出一张图作为本次需求的底图,并开始进行下一环节的操作。
三、SD 放大&重绘功能的利用我们选择用第二张图作为底图,但是放大后不难创造,它的分辨率低,不清晰。有很多细节也存在缺失落的问题。这个时候我们可以对他进行 SD 放大操作。
1. SD Upscale 先容
SD Upscale 也被叫为 SD 放大,大略理解可以把它看作是图生图中的高清修复。它的事情事理是将要放大的图片均匀的分成多块,分别进行重新绘制,并终极拼回一张图,以此来进行高清放大的效果,于此同时还能为画面添加不少细节。
我们可以在图生图界面中滑至最下方,点击脚本这一栏展开,里面有一个利用 SD 放大(SD Upscale),点击选择即可开启。(把稳,只有图生图才能利用该脚本)
2. SD Upscale 的利用
首先,我们将底图拖入图生图的图片区域,然后打开 SD 放大,个中放大倍数以及图块重叠像素可以不做变革,放大算法可以选择 R-ESRGAN 4X+ 或者 R-ESRGAN 4x+ Anime6B(这个倾向二次元一些)。其它也可以考试测验,这两个放大算法是我们比较常用的。
接着我们在画面尺寸这里,宽度高度分别在原来的根本上加上图块重叠的像素数值,也便是分别加 64。对应着现在的宽度为 902,高度为 512,加上 64 后宽度就变为 966,高度变为 576。
大概很多人迷惑为什么要加上这 64 像素呢,这里大略阐明下。由于 SD 放大的事理是将一张图分成均匀的多块重新渲染,然后再重新将这几块图片拼回一张图。而为了使拼接部分不会涌现断层,割裂等不和谐的觉得,在这四块图片的贴合处增加了一部分区域,算法会利用这部分区域去处理拼接处,使得拼接位置过度的更加自然,整体。
回到正题,设置好后,将重绘幅度调低至 0.3-0.35(由于只是用于高清修复,并不想画面内容发生变革,以是此时要保持低重绘幅度),设置好后就可以开始天生图片了。
以上是高清修复后的图,可看到画面的清晰度肉眼可见地提高了,画面的细节也丰富了不少。但是也存在着一个问题,画面有许多奇怪的物体,以及一些 bug 存在,这时候就可以开始用到 Stable Diffusion 的重绘功能了。
3. 重绘功能的利用
首先,我们想去掉纸上的内容,并且把桌子上一些凌乱的东西都去掉,我们可以选择把图片导入 ps 里进行大略的 p 图处理,然后再导回 Stable Diffusion 中的图生图,将重绘幅度调低再天生一次即可。(一样平常重新用图生图输出的图片分辨率都会变低,须要重新用 Stable Diffusion 放大高清修复一下,然后再在此根本上进行重绘)
紧接着我们开始对画面个别元素进行调度。首先,我们想把右上角的黄色卡纸换成信封,这时候我们就可以利用涂鸦重绘功能。点击涂鸦重绘,进入涂鸦重绘版面。
由于我们想把卡纸换成黄色的信封,点击右上角的色盘 icon,选择黄色,调度画笔大小,在卡纸的位置涂上一层,示意这里要换成一封信(把稳涂鸦的造型只管即便和想天生的物体的造型靠近,这样有利于算法识别)。然后在关键词后加上一个黄色的信封,并给上一些权重。(a yellow envelope:1.3)
点击天生后,多天生几次图,挑选较为满意的一张后,先不焦急细化修正,连续把画面其它想要更换的物品调度好。更换的办法也可以像信封一样,利用涂鸦重绘即可。
不过像重叠的书本,或者玩具这类,造型轮廓不规则的,AI 在打算过程可能不能很好地识别。这个时候我们也可以直策应用局部重绘功能,在要重新绘制的区域涂上一层蒙版,然后在关键词后补充上想要更换的内容。例如一叠书本,就在关键词后补充上(A stack of books:1.4),记得加一点权重。
通过这种办法,我们可以把画面里想要更换的元素都更换掉,并且风格也能保持同等,实现“指哪打哪”。(当然,这也避免不了须要多次炼图,只管 Stable Diffusion 可控性好,但 AI 始终是 AI,想要直接渲出自己想要的图片还是很难的。)
到末了,我想在桌面上加一支笔和一个闹钟,但是在涂鸦重绘过程中,始终渲不出我想要的效果。这个时候我们可以找一个笔和闹钟的 png 素材在 ps 里大略处理下放在画面中,然后再把它放回到 Stable Diffusion 的图生图中,调度好低重绘幅度然后重新天生,末了筛选出较为满意的进行后期细化即可。
到了末了阶段,我们就可以回到 ps 里去增加一些画面的细节和内容了。
末了的末了,给画面加一些后期氛围处理后得到终极版本。
总结
不管是 Midjourney、Stable Diffusion 还是一些其他 AI 工具,随着他们版本的不断更新,它们的功能也越来越丰富。这也导致很多设计师加倍焦虑,以为自己这个功能还没学会怎么就出了其余一个功能了。
实在我们没必要焦虑,学习工具的紧张目的便是为了把自己想做的东西实现出来,能够在事情中使项目落地。
在这个案例中我们也没有利用较为新颖的功能,紧张便是 Stable Diffusion 放大和重绘功能,这两功能在 Stable Diffusion 也算是比较根本的。学习新的技能固然主要,但去探索如何利用这些技能去实现项目落地的方法思路更为关键。
文章到此就告一段落,本篇文章也只是分享利用 AIGC 实现需求落地的一种思路,后续我们还会连续探索 AIGC 的项目落地思路流程~
欢迎关注作者微信"大众号:「ASAK」