可以想象自己是一名大学老师,须要开一门AI的课程,那么课程如何设置才能合理,有效率地让学生学到知识。
我查看了十多篇学习方法和学习资源的文章,浏览了几十篇干系内容后,做了一个资源整合,整理出一条相对完全的学习路径。
希望通过此总结,一方面可以让大家对进入AI领域有一个清晰的学习目标,明白学习内容,也可以根据此路径制订自己的学习操持。
另一方面也可以勉励自己按操持学习AI知识。

通过本文,可以收成以下AI学习路径,同时会给出相应的参考学习资料:

学习一门新技能的方法论 AI人文科普 根本知识 编程措辞 机器学习 低级项目实战深化知识 深度学习 高等项目实战或论文

2 方法论

关于学习一门新技能或新知识,学习方法很主要,好的学习方法可以少走弯路。
首先,学习前须要先明确两个问题:是什么?怎么学?这三个问题概括说便是:学习目标与学习操持。
学习目标比较清楚,便是踏入AI领域这个门,可以从事AI干系事情。
学习操持便是对学习内容及过程的设计与实行,也便是本文所写的内容。
还有便是建立学习的信心,学习不随意马虎,以机器学习为例。
在学习过程中,你会面对大量繁芜的公式,在实际项目中会面对数据的缺少,以及艰辛的调参等。
只要制订得当的学习方法,学习是可以的。

人工智能要学什么怎么学分享一份AI进修路径及资料

明确了学习目标和操持,在学习的实行层面,则须要侧重于实践,以兴趣为先,践学结合。
这里则特殊提一下,利用费曼技巧,以教带学,是学习的好方法。
大略来说,费曼技巧便是通过向别人清楚地讲授某件事,来确认自己的确弄懂了某件事。
它分为四个步骤:

1) 选择目标:明确目标选择一个观点

2) 传授教化:学习这个观点和干系知识,想象如何给一个孩子讲清楚。
如果是真的讲授,更好。

3) 纠错并深入学习:传授教化过程中是否有不清楚的地方,如果有,连续学习,加深理解。

4) 简化类比:用自己的措辞,大略的,通过和现实天下的实例关联类比,把一个观点讲清楚

根据费曼方法学习新技能,节制更快,影象更深刻。
学习IT领域技能,此方法非常得当。

3 人工智能科普

3.1 AI人文历史

首先理解这个领域,建立起全面的视野,培养起充足的兴趣。
AI是如何发展起来的,为什么在最近几年才成为热门的研究领域,AI技能包括哪些技能方向,有哪些运用领域,未来会如何发展,前景如何,对社会的影响如何等等,对这些问题都理解后,可以理解AI的前世今生,可以加深自己对AI的印象,加强对AI的兴趣,乃至可以发挥自己对AI的想象,对自己后续的AI学习可以有自己的想法。
关于AI发展和科普,下面的资料可以参考:

书本,《智能时期》,吴军 书本,《智能革命》,李彦宏 书本,《人工智能》,腾讯研究院 书本,《人工智能简史》,尼克 书本,《人工智能时期》《大家都该当知道的人工智能》,杰瑞卡·普兰 书本,《科学的极致:漫谈人工智能》,集智俱乐部 书本,《科技之巅》《科技之巅2》,麻省理工科技评论 博文,从机器学习谈起: https://www.cnblogs.com/subconscious/p/4107357.html

3.2 当前AI发展及布局状况

要学习人工智能,先看看当前海内互联网巨子各自对AI的布局情形,就大概知道AI当前的风口在哪里,会有哪些主要运用,有哪些关键技能。
各大公司旗下都设有AI平台的官网,各大AI 开放平台一览,地址:

https://blog.csdn.net/qq_15071263/article/details/82908201

对各大AI平台的链接,可以看看。
除了理解当前AI在各互联网公司的布局外,还可以关注一下这些公司对AI岗位的招聘哀求及当前的各大招聘网站对此岗位的哀求情形,这样有两个好处,一是明确自己的学习方向,学习有侧重点,二是做到对自己学习的一定的生理预期,知道自己学到哪个程度才能有机会得到此岗位。
如下,是Boss直聘中的一则自然措辞处理干系的招聘:

可见,数学根本、数据处理、自然措辞处理、机器学习、数据挖掘等技能是比较关键的,也是学习的重点。

关于AI当前各大公司布局情形,参考资料如下:

文章,各大AI 开放平台一览:https://blog.csdn.net/qq_15071263/article/details/82908201 网站,百度大脑: https://ai.baidu.com/ 网站,腾讯AI开放平台: https://ai.qq.com/ 网站,阿里达摩院: https://damo.alibaba.com/ 文章,自动驾驶、金融、零售......BAT的AI之战打到哪儿了: https://www.huxiu.com/article/230094.html 书本,《人工智能标准化白皮书2018》: http://www.cesi.ac.cn/201801/3545.html 书本,《人工智能发展白皮书-技能架构篇(2018年)》: http://www.caict.ac.cn/kxyj/qwfb/bps/201809/t20180906_184679.htm 书本,《人工智能发展白皮书家当运用篇(2018年)》: http://www.caict.ac.cn/kxyj/qwfb/bps/201812/t20181227_191672.htm 书本,《中国信通院干系白皮书》: http://www.caict.ac.cn/kxyj/qwfb/bps/

3.3 AI架构及职位选择

3.3.1 AI架构视角

人工智能从业务视角可以分为感知能力、认知能力和做事能力三个层次,两大运用方向,如下:

人工智能技能视角,可以分为根本举动步伐层、技能层和运用层。
如下:

3.3.2 AI职位选择

通过上面两个图,基本理解AI涉及的领域及技能的总体架构,结合前面确当前互联网巨子的布局,可以看出,在未来,对付根本举动步伐层和技能层,基本上由大公司来掌控和布局了,可发展和深入开拓的空间相对较小,个人若想参与这些的研发,则须要从底层的技能和算法学起,哀求很高。
而在运用层,则会有更多的发展空间,利用 AI+行业 或 行业+AI 的模式,结合已有的AI根本举动步伐和AI技能,可以做出更多的运用。
这既是个人发展的机会,也是创业公司的机会。

文章《腾讯云总监手把手教你,如何成为 AI 工程师》:

https://cloud.tencent.com/developer/article/1004751

对AI工程师做了分类,按垂直领域分:有语音识别,图像视觉,个性化推举等业务领域的AI工程师。
按从事研发内容分则有

1)AI 算法研究

这类人大都有博士学历,在学校中积累了较好的理论和数学根本积累,对最新的学术成果能较快理解和接管。
这里的理论是指比如语音处理,打算机视觉等专业知识。
AI算法研究的人紧张研究内容有 样本特色,模型设计和优化,模型演习。
样本特色是指如何从给定的数据中构建样本,定义样本的特色,这在个性化推举领域中就非常主要。
模型设计和优化是设计新的网络模型,或基于已有的模型机型迭代优化,比如CNN网络模型中 AlexNet , GoogleNet v1/v2/v3, ResNet等新模型的不断涌现,其余便是比如模型剪枝,在丢失5%打算精度情形下,减少80%打算量,以实现移动终真个边缘打算等等。
模型演习是指演习网络,如何防止过拟合以及快速收敛。

2)AI 工程实现

这类人紧张供应将打算逻辑,硬件封装打包起来,方便模型的演习和预测。
比如:- 精通Caffee/TensorFlow等演习框架源码,能闇练利用并做针对性优化;- 构建机器学习平台,降落利用门槛,通过页面操作供应样本和模型就能启动演习;- 通过FPGA实施硬件加速,实现更低延时和本钱的模型预测;- 在新模型验证完成后,实现在线平滑的模型切换。

3)AI 运用

侧重验证好的模型在业务上的运用,常见语音识别,图像视觉,个性化推举。
当然这也包括更多结合业务场景的运用,比如终端网络传输带宽的预测,图片转码中参数的预测等等。

综上所述,在选择职位和方向时,除非有比较好的数学和算法根本,建议从AI运用层面来选择,会更随意马虎入手,发展机会更大。

本章的参考资料:

文章,如何系统学习知识图谱:https://blog.csdn.net/hadoopdevelop/article/details/79455758 文章,腾讯云总监手把手教你,如何成为 AI 工程师: https://cloud.tencent.com/developer/article/1004751

4 根本知识

要学习人工智能,免不了要学习算法,学习算法,则须要数学根本。
而在详细打算过程中很多时候须要矩阵打算,因此线性代数知识也是须要。
对付数据的分类,剖析等,还须要有概率和统计。
很多时候人工智能追求的便是最优化问题,举个粟子,BP神经网络利用的权重迭代变革,打算当前权重值离最优值的函数为丢失函数,迭代过程中通过求导来确定调大还是调小,这个求导得到的函数便是梯度,而这个迭代的过程便是梯度低落,在这个过程中,微积分知识也少不了。
在学习过程中,常常会碰着须要查看的论文理解事理,或者查阅一些英文资料,因此英文知识也是须要的。
以上,总结来说,须要以下几大根本知识:

线性代数:标量、向量、矩阵/张量乘法、求逆,奇异值分解/特色值分解,行列式,范数等 概率与统计:贝叶斯、期望与方差、协方差、概率分布(0-1分布、二项分布、高斯分布)、独立性与贝叶斯、最大似然和最大后验估计等 高档数学:微积分、链式法则、矩阵求导、线性优化、非线性优化(凸优化/非凸优化)以及其衍生的如梯度低落、牛顿法等 英文:常备一个在线英文词典,能够不吃力的看一些英文的资料网页

以下是一些参考资料:

书本,《线性代数该当这样学》,Sheldon Axler 书本,《概率论与数理统计》,陈希孺 书本,《数学剖析新讲》三册,张筑生 书本,《深入浅出统计学》, Dawn Griffiths 书本,《统计学习方法》,李航 书本,《矩阵剖析与运用》,张贤达 文章,《机器学习理论篇1:机器学习的数学根本》: https://zhuanlan.zhihu.com/p/25197792

5 编程措辞

当古人工智能开拓利用的最多确当属 python 了,当然, java , c++ , matlab 和 R 也有不少。
刚开始学习,直接选择 python 即可。
对付编程措辞的学习,一个字,练。
直接上机操作,紧张分几个模块的学习,python根本(语法,函数,数组,类等等),python常用的库,python的机器学习库。
以下是一些 pyhton 的学习资料以供参考:

教程,《廖雪峰Python教程》: https://www.liaoxuefeng.com/wiki/1016959663602400 教程,《Python100例》: https://www.runoob.com/python/python-100-examples.html 文章,《从零开始写Python爬虫》: https://zhuanlan.zhihu.com/p/26673214 视频,《零根本入门学习Python》: https://www.bilibili.com/video/av4050443

6 机器学习知识

6.1 机器学习算法

须要明确,当古人工智能技能中,机器学习霸占了主导地位,但不仅仅包括机器学习,而深度学习是机器学习中的一个子项。
目前可以说,学习AI紧张的是学习机器学习,但是,人工智能并不等同于机器学习。
详细到机器学习的流程,包括数据网络、洗濯、预处理,建立模型,调度参数和模型评估。
根本则是机器学习的基本算法,包括回归算法,决策树、随机森林和提升算法,SVM,聚类算法,EM算法,贝叶斯算法,隐马尔科夫模型,LDA主题模型等等。
这些网上已经有不少机器学习的教程,学习非常方便,在搜索引擎一搜索,机器学习的文章也非常多,只要坚持下去,结合后面的实践,学习该当不成问题。
以下是一些参考资料:

书本,《机器学习实战》,Peter Harrington 书本,《机器学习》,周志华 书本,《机器学习导论》,Ethen Alpaydin 书本,《机器学习根本:从入门到求职》胡欢武 书本,《数据之美》,吴军 视频,《machine learning》吴恩达: https://www.coursera.org/learn/machine-learning 视频,《李宏毅机器学习2017》李宏毅: http://t.cn/RpO3VJC 文章,《机器学习Machine-Learning》: https://github.com/JustFollowUs/Machine-Learning

6.2 机器学习框架

理解机器学习的算法,还须要有一定的工具来实现,好在现在已经有很多工具可以利用,如tensorflow,Keras,Theano,matlab等等,现在tensoflow是机器学习的热门框架,入门可以深入学习它。
以下是一些参考资料

书本,《TensorFlow实战》,黄文坚 书本,《Tensorflow:实战Google深度学习框架》,郑泽宇 视频,《Tensorflow教程》莫烦: http://t.cn/RTuDxFT

6.3 数据集选择

\公众巧妇难为无米之炊\公众,利用机器学习来进行项目实践时,如果没有数据,就更不用说模型演习了。
因此,获取数据集来做测试数据也是一个比较主要的工具,好在现在网上有不少的数据集可以获取,参考资料如下:

手写数字库MNIST: http://yann.lecun.com/exdb/mnist 图像处理数据COCO: http://mscoco.org 机器学习经典开源数据集: https://www.jianshu.com/p/83ebd261862a 机器学习数据集哪里找: https://www.jianshu.com/p/abce3d177e45

7 低级项目实践

在实践中学习,用一些小的示例来实现功能,用机器学习来办理一个实际的问题(如图像领域,识别狗,识别花等等),把机器学习方法当作一个黑盒子来处理,选择一个运用方向,是图像(打算机视觉),音频(语音识别),还是文本(自然措辞处理),推举选择图像领域,这里面的开源项目较多。
也可以上github找一下干系的开源项目来参考。

8 深度学习知识

深度学习是机器学习中的一个子项,它源于人工神经网络的研究,含多个隐蔽层的多层感知器便是一种深度学习构造。
学习过程中,须要对深度学习的观点进行理解,熟习BP神经网络,CNN卷积神经网络,RNN循环神经网络等事理及运用。
以下是一些参考资料:

书本,《Deep Learning for Computer Vision with Python》,Adrian Rosebrock 书本,《Tensorflow:实战Google深度学习框架》,郑泽宇 书本,《深度学习》,伊恩·古德费洛 书本,《Python深度学习》,弗朗索瓦·肖莱 书本,《深度学习与打算机视觉》,叶韵 视频,《Deep Learning》吴恩达: https://www.bilibili.com/video/av49445369 视频,《Stanford CS231N 2017》李飞飞: http://t.cn/RTueAct 视频,《一天搞懂深度学习心得》李宏毅: http://t.cn/RTukvY6 视频,《李宏毅深度学习2017》: http://t.cn/RpO3VJK 视频,《 Deep Learning With Tensorflow》: http://t.cn/RTuDcjC

9 高等项目实践或论文

具备了较强的知识储备,可以进入较难的实战。
两个选择,工业界的可以选择看开源项目,以改代码为目的来读代码;学术界的可以看特定领域的论文,为办理问题而发论文。
或者可以参加 kaggle 竞赛,来验证一下,办理问题。
到了这个阶段,就看个人的修行了。
不过到了此阶段,转头看一开始的学习操持,基本已经达到目的了。
末了,对付论文查询,就不得不提arXiv了,arXiv是个网络物理学、数学、打算机科学与生物学的论文预印本的网站。
将预稿上传到arxiv作为预收录,可以防止自己的idea在论文被收录前被别人剽窃。
因此arXiv是个可以证明论文原创性(上传韶光戳)的文档收录网站。
现今的很多科学家习气先将其论文上传至arXiv.org,再提交予专业的学术期刊。
以下供应两个工具可以利用:

arXiv官网: https://arxiv.org arxiv论文查询: http://www.arxiv-sanity.com 带代码的论文查询: https://paperswithcode.com

总结

通过查询并阅读了十多篇对人工智能的学习方法和学习资源的文章后,本文试图对这些资源进行整合,整理出一条相对完全的学习路径,每一个阶段都给出了相应的参考资料,有了资料,更主要的是须要去学习和实践,希望对自己的学习有一个明确的操持,也希望对想进行AI领域的同学有帮助。